ОСОБЕННОСТИ ПРОЦЕССОВ ПРИ РАЗМЫКАНИИ ВЫСОКОВОЛЬТНЫХ МАГНИТОУПРАВЛЯЕМЫХ КОНТАКТОВ

А.Е. Чижиков, С.Б. Ильичев, А.В. Шлыков 390005, ул. Гагарина 59/1, г. Рязань, Россия, ГОУВПО «Рязанский государственный радиотехнический университет»

Приведены результаты исследования формы и длительности фронтов импульсов тока и напряжения при замыкании и размыкании контактов высоковольтного геркона МКА-40142 при коммутируемых напряжениях до 2 кВ и токах, не превышающих 5 мА.

Приведены осциллограммы фронтов импульса тока геркона при разных коммутируемых напряжениях и токах. Рассчитанная величина ускорения электродов при замыкании – $10^6 - 10^7$ м/с², что существенно больше значения, используемого ранее при анализе процессов в герконе.

Results of investigation of the form and time of current and voltage impulse fronts while closing and opening of contacts of high-voltage reed switch MKA-40142 at switching voltages up to 2 kV and currents not exceeding 5 mA are given.

Oscillograms of current impulse fronts of the reed switch at various switching voltages and currents are presented. The calculated value of the electrode acceleration when contacts closed is 10^{6} – 10^{7} m/s², it is essentially more than that used earlier when analyzed processes in the reed switch.

Долговечность и надежность работы геркона в основном определяются состоянием поверхности контактной части. Изменение состояния поверхности высоковольтных магнитоуправляемых контактов происходит как при замыкании, так и при размыкании контактов. Исследования разных авторов показали, что основными процессами, ответственными за эрозию поверхности контактирующих участков, являются мостиковая эрозия, разогрев, плавление, испарение и разрушение отдельных участков при протекании автоэлектронных, термоэмиссионных токов и токов газового разряда при замыкании и размыкании. Знание закономерностей возникновения и развития этих токов весьма важно, так как позволяет более точно сформулировать требования к электрофизическим характеристикам контактирующих поверхностей и технологии изготовления герконов.

Целью настоящей работы являлось изучение закономерностей изменения во времени токов промежутка при замыкании и размыкании электродов BB герконов МКА-40142, основные параметры которых приведены в табл. Исследовалось два геркона, один из которых (N_2 2) по электрической прочности изоляции относится к группе A (напряжение пробоя < 10 кB), другой (N_2 1) – к группе Б (напряжение пробоя >10 кB).

Максимальное	Максимальный	Максимальная	Материал	Длительность
рабочее	переключаемый	переключаемая	контактного	рабочего
напряжение, В	ток, А	мощность, Вт	покрытия	импульса, макс.
5000	3,0	50 (U<1000 B) 10 (U>1000 B)	Мо	3 мс

При исследованиях на стандартную катушку управления подавались прямоугольные импульсы напряжения от генератора Г5 – 63. Для контроля формы импульса тока в цепь катушки был включен резистор сопротивлением 100 Ом. Постоянное высокое напряжение отрицательной полярности подавалось на один из электродов геркона через ограничительный резистор, а для контроля формы импульса тока геркона его второй электрод заземлялся через измерительный резистор сопротивлением 1 кОм. Для контроля

амплитуды и формы импульса напряжения на герконе параллельно ограничительному резистору был подключен высокоомный делитель напряжения (150 МОм и 1,5 кОм). Импульсы напряжения с периодом 2,5 с и длительностью 3,2 мс на катушке и импульсы с измерительных резисторов подавались на вход четырехканального запоминающего осциллографа АСК – 3107 АКТАКОМ и после преобразований выводились на персональный компьютер. Одновременно на дисплее можно было наблюдать форму 4-х импульсов напряжения и тока.

Были исследованы 2 режима: с шунтированием катушки управления диодом и без шунтирования. При работе без шунтирующего катушку диода по окончании импульса напряжения генератора появлялся импульс напряжения противоположной полярности, приводящий к уменьшению времени замкнутого состояния контактов геркона. На длительность фронтов импульсов при замыкании и размыкании наличие диода влияния не оказывало.

Исследования проводились при токе геркона 0.5–3 мА, величина которого при данном напряжении задавалась ограничительным сопротивлением. На рис. 1 приведены формы импульсов напряжения (1) и тока (2) катушки управления, а также формы импульсов тока (3) и напряжения (4) геркона № 1 в схеме без шунтирующего диода.

Рис. 1. Формы импульсов напряжения (1) и тока (2) катушки, тока геркона (3) и напряжения геркона (4); в 1 клетке 10 В, 50 мА, 0,5 мА, 35 В, соответственно. Развертка 500 мкс/дел.

На рис. 2 (а, б) для разной скорости развертки приведены осциллограммы переднего фронта импульсов напряжения и тока (при замыкании) геркона № 1 при коммутируемом напряжении 2 кВ и ограничительном сопротивлении 400 кОм. Форма импульсов снималась с усреднением по 10 импульсам с применением накопительного фильтра (встроенная функция осциллографической приставки). Импульс тока инвертирован, так что нулевая линия развертки у импульсов общая.

Анализ закономерностей изменения напряжения и тока геркона на стадии замыкания указывает на наличие двух видов тока: тока смещения и автоэлектронного тока. Из-за малости времени замыкания стационарные разрядные токи формироваться не успевают. Возможно прохождение лавин и существование стримерного пробоя.

Рис. 2. Форма переднего фронта импульса тока (1) и напряжения (2) геркона при замыкании; напряжение 2 кВ, ток 5 мА, развертка а) 5 мкс/дел., б)100 мкс/дел.

На рис. 3 (а, б) приведены формы импульсов тока геркона № 1 (осциллограмма 1) и напряжения на герконе (осциллограмма 2) при размыкании, разных коммутируемых напряжениях (2 кВ и 100 В), но для одинаковых токов 5 мА. Рис. 3 (а) соответствует напряжению 2 кВ, а рис. 3 (б) – 100 В. Развертка – 100 мкс/дел.

Рис. 3. Форма заднего фронта импульсов тока (1) и напряжения (2) геркона при размыкании; а) 2000 В, 5 мА, 100 мкс/дел., б) 100 В, 5 мА, 100 мкс/дел.

На рис. 4 приведены формы задних фронтов импульсов тока (осциллограмма 1) и напряжения (осциллограмма 2) при размыкании электродов геркона № 2 (с меньшей электрической прочностью) при напряжении 2 кВ и коммутируемом токе 5 мА. Развертка – 100 мкс/дел. Нулевая линия – общая.

Рис. 4. Форма заднего фронта импульсов тока (1) и напряжения (2) геркона № 2 при размыкании; 2000 В/дел., 5 мА, 100 мкс/дел.

Анализ зависимостей изменения тока и напряжения геркона от времени при разных ограничительных сопротивлениях и переключаемых напряжениях позволяет сделать следующие выводы:

- Время замыкания геркона составляет около 10 микросекунд, а протекающие токи являются токами смещения и автоэлектронными токами. Расчет ускорения движения электродов при замыкании с учетом зависимости межэлектродного расстояния от времени показал, что ускорение составляет примерно 10^6-10^7 м/с². Скорость движения электродов в момент замыкания составляет около от 10 м/с до 100 м/с. Вероятность формирования установившихся разрядов на этой стадии невелика.

- Время размыкания геркона (250 – 300 мкс) в сотни раз превышает время замыкания и состоит из нескольких колебаний – интервалов и последующего длительного спада тока и возрастания напряжения на электродах. Короткие (десятки мкс) колебания определяются движением электродов под действием упругих сил и изменением сопротивления контакта. Они протекают при нулевом токе катушки управления. Длительность этого интервала практически не зависит от режима включения и работы геркона. Интенсивность процессов на этой стадии сильно зависит от электропрочности геркона.

- Последующий длительный спад тока протекает при отсутствии физического контакта между электродами. Его длительность, вероятнее всего, определяется временем существования проводящего состояния промежутка и зависит от времени существования разряда, возникающего в парах материала электродов в начальный момент разрыва контактов-мостиков.

Литература:

- 1. Герметизированные магнитоуправляемые контакты // Межвуз. сб-к научн. трудов. Вып. 1, 1975. – С. 127; вып. 2, 1976. – С. 124; вып. 3, 1977. – С. 160; вып. 4, 1979. – С. 130; вып. 5, 1982. – С. 160.
- 2. Рабкин Л.И., Евгенова И.Н. Магнитоуправляемые герметизированные контакты // Связь. М.: 1976. 104 с.

3. Магнитоуправляемые контакты (герконы) и изделия на их основе // Сборник трудов первой Международной научно-практической конференции, Рязань, Россия, 11-14 октября 2005 г. – 170 с.