ИССЛЕДОВАНИЕ ВЛИЯНИЯ ТЕРМИЧЕСКОЙ ОБРАБОТКИ КОНТАКТНЫХ СЕРДЕЧНИКОВ НА СТАБИЛИЗАЦИЮ ПАРАМЕТРОВ ГЕРКОНОВ, ПРОИЗВОДИМЫХ В АО ППЭП «ДОЛАМ»*

*Статья приведена в авторской редакции и переводе на русский язык

Я. Зависляньски, к.т.н., Б. Медзински, д.т.н.*

50 – 425, ул. Краковска 64, Вроцлав, Польша, Производственное предприятие электронных приборов АО «ДОЛАМ» * 50 – 370, ул. В. Выспяньского 27, Вроцлав, Польша, Вроцлавская Политехника

Представлены результаты исследований влияния термической обработки проволоки для производства контактных сердечников на ее параметры. Исследованиями охвачены различные типы проволоки, применяемой в «Долам» А.О. для производства герконов: Pernifer 50, $\Phi = 0.56$ мм, Vacovit 530, $\Phi = 1.35$ мм, Pernifer 2918, $\Phi = 1.35$ мм.

Results of studying the effect of thermal treatment of wire to produce contact cores on parameters thereof are presented. Various wire types used in "Dolam" S.A. for reed switch production: Pernifer 50, $\Phi = 0,56$ mm, Vacovit 530, $\Phi = 1,35$ mm, Pernifer 2918, $\Phi = 1,35$ mm are investigated.

Введение

Во время технологического процесса производства герконов проводится ряд операций, которые влияют на:

- стабилизацию магнитных параметров проволоки, применяемой для контактов герконов;
- жесткость контактов;
- адгезию контактного слоя к материалу основания.

В настоящей работе исследовалось влияние термической обработки на параметры контактного слоя и материала основания. Эти параметры непосредственно влияют на электрические параметры и безотказность работы герконов.

Испытаниям была подвергнута проволока, применяемая в АО «ДОЛАМ» для производства следующих герконов:

- миниатюрных Pernifer 50, Φ = 0,56 [мм];
- стандартных Vacovit 530, $\Phi = 1,35$ [мм];
- вакуумных (высокого напряжения) Pernifer 2918, $\Phi = 1,35$ [мм].

I. Исследование влияния термической обработки на магнитные параметры проволоки, применяемой в производстве контактов герконов

- 1. Электрическая схема для замера магнитных параметров представлена на рис. 1.
- 2. Данные элементов:

Данные элементов катушек

Параметры	К	атушка 1	Катушка 2		
	Количество витков	Сопротивление катушки г _{е1}	Количество витков	Сопротивление катушки г _{с2}	
Вид проволоки	nı	Ω	n ₂	Ω	
Pernifer 2918; $\Phi = 1,35 \text{ [mm]}$ Vacovit 530; $\Phi = 1,35 \text{ [mm]}$	10 000	850	10 000	850	
Pernifer 50; $\Phi = 0,56 \text{ [mm]}$	10 000	1 450	10 000	1 450	

Электронные элементы схемы:

$$R_1 = 51,5 \ [\Omega], \ R_2 = 99,63 \ [k\Omega], \ C_1 = 1,086 \ [\mu F], \ tg\delta = 0,0086$$

Таблица 2

Данные образцов проволоки

Pernifer 2918; $\Phi = 1,35$ [mm]		Pernifer 50; d	0 = 0,56 [mm]	Vacovit 530; Φ = 1,35 [mm]		
сечение S _{d1}	длина l _{d1}	сечение S _{d2}	длина l _{d2}	сечение S _{d3}	длина l _{d3}	
mm ²	m	mm ²	m	mm ²	m	
1,431	0,205	0,246	0,150	1,431	0,238	

Рис. 1. Схема для измерения магнитных параметров материала основания

Для определения магнитных параметров проволоки – петли гистерезиса – был применен осциллоскопный метод. Были определены основные величины, описывающее петлю магнитного гистерезиса, то есть: индукция насыщения *B*_{nas}, остаточная индукция *B*_T и

величина поля коэрцитивности *H_c*. Для оценки влияния параметров термической обработки на магнитные параметры материала основания хватило для того, чтобы определить только относительные изменения этих представляемых петель магнитного гистерезиса параметров, и именно эти величины представлены в настоящей статье. При проведении испытаний также были определены реальные величины магнитных параметров и оценена надежность замеров.

- 3. Основные зависимости для измерительной схемы, представленной на рис. 1
 - а) Первичная цепь питается переменным напряжением электрической сети.

Напряженность магнитного поля Н в образце определяется следующей зависимостью:

$$\oint_{l} H \cdot dl = I_1 \cdot n_1, \tag{1}$$

где

 I_1 - величина тока в обмотке катушки 1,

- n_1 количество витков катушки 1,
- *l* длина магнитной цепи для данного образца.

На пластины горизонтального отклонения осциллоскопа подается напряжение U_{x-x} величиной:

$$U_{X-X} = I_1 \cdot R_1. \tag{2}$$

Используя зависимость (1) после простых преобразований, получаем:

$$U_{X-X} = \frac{R_1 \cdot l_d}{n_1} \cdot H \,. \tag{3}$$

Вывод:

Напряжение, подаваемое на пластины горизонтального отклонения осциллоскопа, прямо пропорционально напряженности магнитного поля *H*.

b) Вторичная цепь

Переменный ток I_{1} , протекающий в катушке 1, образует в испытываемом образце переменный магнитный поток Φ , который индуктирует в обмотке катушки 2 напряжение величиной:

$$E_{ind} = -\frac{d\Psi}{dt} = -n_2 \cdot \frac{d\phi}{dt}, \qquad (4)$$

где

 Ψ - потокосцепление катушки 2,

*n*₂- количество витков катушки 2,

 ϕ - магнитный поток в испытываемом образце.

Магнитный поток ϕ можно определить через индуктивность поля *B* и площадь поперечного сечения образца *S*_d:

$$\phi = B \cdot S_d \,. \tag{5}$$

С учетом (5) формула (4) получает следующий вид:

$$E_{ind} = -n_2 \cdot S_d \cdot \frac{dB}{dt}.$$
 (6)

Рост напряжения dU_c на конденсаторе C_1 в интервале времени dt, вызванный протеканием тока I_2 во вторичной цепи, составляет:

$$dU_C = \frac{I_2 \cdot dt}{C_1}.$$
(7)

Величину тока *I*₂ можно определить по зависимости:

$$I_2 = \frac{E_{ind}}{Z_2},\tag{8}$$

где

*Z*₂ – полное сопротивление (импеданс) вторичной цепи.

Величину этого импеданса определяем по зависимости:

$$Z_2 = R_2 + \frac{1}{j\omega C_1} + j\omega L, \qquad (9)$$

где

L – индуктивность катушки 2.

Величины элементов вторичной цепи были подобраны таким образом, чтобы были выполнены следующие требования:

$$R_2 \gg \frac{1}{\omega C_1} \quad i \quad R_2 \gg \omega L \,. \tag{10}$$

В связи с указанным выше импеданс Z₂ будет практически равен R₂:

$$Z_2 \cong R_2. \tag{11}$$

Выражение, определяющее величину тока во вторичной цепи, имеет вид:

$$I_2 = \frac{E_{ind}}{R_2}.$$
(12)

Используя формулы (6) и (12), выражение (7) приобретает вид:

$$dU_C = -\frac{n_2 \cdot S_d}{R_2 \cdot C_1} \cdot dB \,. \tag{13}$$

После интегрирования выражения (13) окончательно получаем:

$$U_C = U_{Y-Y} = -\frac{n_2 \cdot S_d}{R_2 \cdot C_1} \cdot B \,. \tag{14}$$

Напряжение U_C прямо пропорционально величине магнитной индукции В.

Подавая на пластины горизонтального отклонения осциллоскопа напряжение U_{x-x} , которое является пропорциональным магнитному полю *H*, а на пластины вертикального отклонения – напряжение U_{y-y} , которое является пропорциональным индукции магнитного поля *B*, на экране осциллоскопа получаем график B=f(H).

4. Определение основных магнитных параметров, описывающих испытываемые образцы

Величинами, которые характеризуют испытываемые образцы по их магнитным свойствам, являются:

- *B*_{nas} величина индукции насыщения;
- *B*_r величина остаточной индукции;
- *H*_c величина коэрцитивной силы.

Совершая измерения напряжений, соответствующих вышеуказанным величинам, а также используя выражения (3) и (14), можем определить исследуемые нами магнитные параметры материала, из которого изготовлены контакты герконов.

$$H = \frac{n_1}{R_1 \cdot l_d} \cdot U_{X-X}$$

$$B = -\frac{R_2 \cdot C_1}{n_2 \cdot S_d} \cdot U_{Y-Y}$$

$$(15)$$

5. Результаты измерений

Таблица 3

		Pernifer 50, $\Phi = 0,56$ [mm]						
Маринтина		Приготовление образца: отрезки длиной 1 = 150 [мм]						
параметры	Перед	Параметры после термической обработки						
. r r		термической обработкой	600°C	650°C	700°C	750°C	800°C	
B _{nas}	[Gs]	1372	3136	4410	5390	5390	5635	
Br	[Gs]	1127	2695	3675	4410	4410	4655	
Hc	[A/m]	678	424	339	297	297	254	
Параметры термической обработки: отжиг в мокром H ₂ , скорость ленты 1"/мин.								

Таблица 4

Регліfer 2918; Ф = 1,35 [мм]									
			Приготовление образца: отрезки длиной l = 205 [мм]						
		Род механической обработки проволоки							
Магнитные параметры		Проволока (без механической обработки)		Штамповка		Ручная прокатка			
		Перед термической обработкой	После термической обработки	Перед термической обработкой	После термической обработки	Перед термической обработкой	После термической обработки		
BB _{nas}	[Gs]	1670	4250	76	5313	38	-		
BBr	[Gs]	1336	3036	45	3795	30	-		
HHc	[A/m]	397	347	397	248	-	-		
Параметры термической обработки: темп. = 1000°С, скорость ленты = 1"/ мин., количество циклов = 3									

Испытание проволоки Vacovit 530 проведено на 4 образцах. Результаты представлены в табл. 5.

Таблица 5

				VACOVIT 530; $\Phi = 1,35 \text{ [mm]}$				
Магнитные параметры		Приготовление образца: отрезки длиной 1 = 238 [mm]						
		Образец 1 - проволока без механической обработки		Контакты - штамповка - 3 образца				
		Перед термической обработкой	После термической обработки 3 цикла	Перед термической обработкой	Послет	После термической обработки		
				Образцы: 2,3,4	Образец № 2 1 цикл	Образец № 3 2 цикла	Образец № 4 3 цикла	
BB _{nas}	[Gs]	1478	10560	123	8800	6864	8096	
BBr	[Gs]	1200	9150	53	7040	5456	6340	
HHc	[A/m]	440	236	314	236	264	236	
Параметры термической обработки: темп. = 1000 °С, скорость ленты = 1"/ мин.								

6. Графики

Vacovit 530

B_{nas}=10560 [Gs] B_r =9152 [Gs] H_c =236 [A/m]

После термической

обработки - 3 цикла

Образец 1.

a) Vacovit 530

Примерные петли магнитного гистерезиса указаны на рис. 2÷14.

 \mathbf{B}_{r}

Рис. 3

 $H_{\rm C}$

Выводы:

- Проволока VACOVIT 530 характеризуется повышенными значениями индукции насыщения В_{паs} и остаточной магнитной индукции В_r по сравнению с соответствующими параметрами проволоки Pernifer 2918. Величина напряжений полей коэрцитивной силы H_c для обоих материалов перед термической обработкой значительно отличается, однако после проведения данной операции эти отличия существенно уменьшаются.
- В результате испытаний было определено, что после первого цикла термической обработки были получены наиболее рациональные магнитные свойства материала контактных сердечников с точки зрения их применения в производстве герконов.
- b) Pernifer 2918

Выводы:

- Механическая обработка проволоки Pernifer 2918 (штамповка контактов на прессе, вальцовка) вызывает резкое падение величины индукции насыщения B_{nas}, остаточной индукции B_r при небольшом изменении величины поля коэрцитивной силы H_c – табл. 4.
- 2. Термическая обработка проволоки вызывает очень сильный рост B_{nas} и B_r , а также уменьшение величины поля коэрцитивной силы H_c на около 40% для контактных сердечников, изготовленных на прессе.

Pernifer 50

После

Рис. 12

Выводы:

1. Для проволоки Pernifer 50 исследовалось влияние температуры термической обработки материала на его магнитные параметры. Из проведенных испытаний следует, что начиная с температуры 700 °С, практически не наблюдается изменения параметров B_{nas}, B_r и H_c. Следует принять, что температура 700 °С является оптимальной для получения материала, имеющего стабильные магнитные параметры – табл. 3.

2. Также было исследовано влияние температуры термической обработки проволоки Pernifer 50, Φ = 0,56 [мм] на ее жесткость. Из полученных результатов следует, что материал, подвергнутый термической обработке при температуре 700 °C, обладает также самой высокой жесткостью.

7. Исследование влияния параметров термической обработки на адгезию стыкового материала к материалу основания

Исследования распространены для всех типов проволок и для избранных типов стыковых материалов. Результаты представлены на рис. 15÷25 в виде снимков, полученных при помощи сканирующего микроскопа.

Рис. 15.

Pernifer 50.

Поверхность Au+Ru непосредственно после покрытия (без термической обработки). Увеличение 2000х (20µм)

Рис. 16.

Pernifer 50.

Поверхность Au+Ru после термической обработки. Увеличение 2000х (20µм)

Рис. 20.

Vacovit 530.

Поверхность Au+Ru после термической обработки. Увеличение 2000х (20µм)

Ni Ni

Au

10 Energy (keV)

600-

400-

200-

n.

Рис. 21.

Pernifer 2918.

Поверхность Au+Ru после термической обработки. Увеличение 2000х (20µм)

Рис. 22.

Pernifer 2918.

Поверхность Au+Ru после термической обработки. Химический состав

- 1. Особенно трудным с точки зрения обеспечения хорошей адгезии контактного слоя к основанию является рутений. В слоях, изготовленных на базе этого элемента, имеют место значительные напряжения (рис. 16 и 20), которые в предельных случаях могут привести к их отслаиванию.
- 2. Применяя соответствующие технологические операции (термическая обработка, подготовка основания перед его покрытием и другие), можно обеспечить желаемую степень адгезии покрытия к основанию (см. рис. 21 и 22), что для вакуумных герконов в значительной степени влияет на величину и стабильность устойчивости напряжения, а также на величину тока утечки (рис. 26÷28).

Рис	26
I NO.	20

ZP- leakage current - reed switch nr 2 Leakage current [nA] →o~ lk2a_d □ lk2a_a → lk2b_d lk2b_a voltage [kV]_{DC}

Рис. 27

Окончательные выводы

В производственном процессе, связанном с изготовлением герконов, применяется ряд технологических операций, которые определяют их магнитные и электрические параметры, а также безотказность этих изделий. В настоящей работе мы сосредоточились, прежде всего, на термической обработке и ее влиянии на:

- магнитные параметры материала основания контактов герконов;
- жесткости материала основания;
- адгезии контактного материала к основанию;
- напряжений в контактном слое.

Мы утверждаем, что оптимизация технологического процесса в сфере термической и механической обработки с целью получения хороших механических, магнитных и электрических параметров, а также безотказности связана с применением некоторых компромиссных решений. Особенно это относится к вакуумным высоковольтным герконам, от которых требуется хорошая стабильная стойкость к высоким напряжениям в пределе 15÷20 кВ и очень низкий ток ≤ 100 нА.